Prioritizing COVID-19 tests based in Participatory Surveillance and Spatial Scanning.


Onicio Batista Leal Neto, Francisco Assis Santos, Julia Yeri Lee, Jones Albuquerque, Wayner Vieira Souza


This study aimed to identify, describe and analyze priority areas for Covid-19 testing combining participatory surveillance and traditional surveillance. Design It was carried out a descriptive transversal study in the city of Caruaru, Pernambuco state, Brazil, within the period of 20/02/2020 to 05/05/2020. Data included all official reports for influenza-like illness notified by the municipality health department and the self-reports collected through the participatory surveillance platform Brasil Sem Corona. Methods We used linear regression and loess regression to verify a correlation between Participatory Surveillance (PS) and Traditional Surveillance (TS) . Also a spatial scanning approach was deployed in order to identify risk clusters for Covid-19. Results In Caruaru, the PS had 861 active users, presenting an average of 1.2 reports per user per week. The platform Brasil Sem Corona started on March 20th and since then, has been officially used by the Caruaru health authority to improve the quality of information from the traditional surveillance system. Regarding the respiratory syndrome cases from TS, 1,588 individuals were positive for this clinical outcome. The spatial scanning analysis detected 18 clusters and 6 of them presented statistical significance (p-value < 0.1). Clusters 3 and 4 presented an overlapping area that was chosen by the local authority to deploy the Covid-19 serology, where 50 individuals were tested. From there, 32% (n=16) presented reagent results for antibodies related to Covid-19.


Participatory surveillance is an effective epidemiological method to complement the traditional surveillance system in response to the COVID-19 pandemic by adding real-time spatial data to detect priority areas for Covid-19 testing.

Overview of SARS-COV-2 studies seroprevalence in context of the worldwide  COVID-19 pandemie. You can register a study here: Contribute
@serohub on Twitter
hzi-braunschweig/serohub on GitHub